\(\int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx\) [304]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 235 \[ \int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx=-\frac {2 \sqrt {a x^2+b x^5}}{5 a x^{7/2}}-\frac {2 b x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{5 \sqrt [4]{3} a^{4/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}} \]

[Out]

-2/5*(b*x^5+a*x^2)^(1/2)/a/x^(7/2)-2/15*b*x^(3/2)*(a^(1/3)+b^(1/3)*x)*((a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1
/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)/(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))*(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))*EllipticF(
(1-(a^(1/3)+b^(1/3)*x*(1-3^(1/2)))^2/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*((a^(2/
3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/a^(4/3)/(b*x^5+a*x^2)^(1/2)
/(b^(1/3)*x*(a^(1/3)+b^(1/3)*x)/(a^(1/3)+b^(1/3)*x*(1+3^(1/2)))^2)^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2050, 2057, 335, 231} \[ \int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx=-\frac {2 b x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}{\left (1+\sqrt {3}\right ) \sqrt [3]{b} x+\sqrt [3]{a}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{5 \sqrt [4]{3} a^{4/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}}-\frac {2 \sqrt {a x^2+b x^5}}{5 a x^{7/2}} \]

[In]

Int[1/(x^(5/2)*Sqrt[a*x^2 + b*x^5]),x]

[Out]

(-2*Sqrt[a*x^2 + b*x^5])/(5*a*x^(7/2)) - (2*b*x^(3/2)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x
+ b^(2/3)*x^2)/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*EllipticF[ArcCos[(a^(1/3) + (1 - Sqrt[3])*b^(1/3)*x)/(a^
(1/3) + (1 + Sqrt[3])*b^(1/3)*x)], (2 + Sqrt[3])/4])/(5*3^(1/4)*a^(4/3)*Sqrt[(b^(1/3)*x*(a^(1/3) + b^(1/3)*x))
/(a^(1/3) + (1 + Sqrt[3])*b^(1/3)*x)^2]*Sqrt[a*x^2 + b*x^5])

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2050

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(j - 1)*(c*x)^(m - j +
1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p + 1))), x] - Dist[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1))
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rule 2057

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[c^IntPart[m]*(c*x)^FracPa
rt[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \sqrt {a x^2+b x^5}}{5 a x^{7/2}}-\frac {(2 b) \int \frac {\sqrt {x}}{\sqrt {a x^2+b x^5}} \, dx}{5 a} \\ & = -\frac {2 \sqrt {a x^2+b x^5}}{5 a x^{7/2}}-\frac {\left (2 b x \sqrt {a+b x^3}\right ) \int \frac {1}{\sqrt {x} \sqrt {a+b x^3}} \, dx}{5 a \sqrt {a x^2+b x^5}} \\ & = -\frac {2 \sqrt {a x^2+b x^5}}{5 a x^{7/2}}-\frac {\left (4 b x \sqrt {a+b x^3}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^6}} \, dx,x,\sqrt {x}\right )}{5 a \sqrt {a x^2+b x^5}} \\ & = -\frac {2 \sqrt {a x^2+b x^5}}{5 a x^{7/2}}-\frac {2 b x^{3/2} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} F\left (\cos ^{-1}\left (\frac {\sqrt [3]{a}+\left (1-\sqrt {3}\right ) \sqrt [3]{b} x}{\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{5 \sqrt [4]{3} a^{4/3} \sqrt {\frac {\sqrt [3]{b} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\sqrt [3]{a}+\left (1+\sqrt {3}\right ) \sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.24 \[ \int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx=-\frac {2 \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {5}{6},\frac {1}{2},\frac {1}{6},-\frac {b x^3}{a}\right )}{5 x^{3/2} \sqrt {x^2 \left (a+b x^3\right )}} \]

[In]

Integrate[1/(x^(5/2)*Sqrt[a*x^2 + b*x^5]),x]

[Out]

(-2*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[-5/6, 1/2, 1/6, -((b*x^3)/a)])/(5*x^(3/2)*Sqrt[x^2*(a + b*x^3)])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.16 (sec) , antiderivative size = 732, normalized size of antiderivative = 3.11

method result size
risch \(-\frac {2 \left (b \,x^{3}+a \right )}{5 a \,x^{\frac {3}{2}} \sqrt {x^{2} \left (b \,x^{3}+a \right )}}-\frac {4 b^{2} \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, {\left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}^{2} \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, \sqrt {\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{b \left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}\, F\left (\sqrt {\frac {\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) x}{\left (-\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}{\left (\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right ) \sqrt {x}\, \sqrt {x \left (b \,x^{3}+a \right )}}{5 a \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {b x \left (x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}\, \sqrt {x^{2} \left (b \,x^{3}+a \right )}}\) \(732\)
default \(\text {Expression too large to display}\) \(1795\)

[In]

int(1/x^(5/2)/(b*x^5+a*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/5/a*(b*x^3+a)/x^(3/2)/(x^2*(b*x^3+a))^(1/2)-4/5*b^2/a*(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))
*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/
3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*(x-1/b*(-a*b^2)^(1/3))^2*(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3
^(1/2)/b*(-a*b^2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)*
(1/b*(-a*b^2)^(1/3)*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/
2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(-a*
b^2)^(1/3)/(b*x*(x-1/b*(-a*b^2)^(1/3))*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*(x+1/2/b*(-a*b^
2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*EllipticF(((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/
3))*x/(-1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(x-1/b*(-a*b^2)^(1/3)))^(1/2),((3/2/b*(-a*b^2)^(1
/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*(1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(1/2/b*(-a*b^2)^(1/3
)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))/(3/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))/(x^2*(b*x^3+a)
)^(1/2)*x^(1/2)*(x*(b*x^3+a))^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.20 \[ \int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx=\frac {2 \, {\left (2 \, \sqrt {a} b x^{4} {\rm weierstrassPInverse}\left (0, -\frac {4 \, b}{a}, \frac {1}{x}\right ) - \sqrt {b x^{5} + a x^{2}} a \sqrt {x}\right )}}{5 \, a^{2} x^{4}} \]

[In]

integrate(1/x^(5/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="fricas")

[Out]

2/5*(2*sqrt(a)*b*x^4*weierstrassPInverse(0, -4*b/a, 1/x) - sqrt(b*x^5 + a*x^2)*a*sqrt(x))/(a^2*x^4)

Sympy [F]

\[ \int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx=\int \frac {1}{x^{\frac {5}{2}} \sqrt {x^{2} \left (a + b x^{3}\right )}}\, dx \]

[In]

integrate(1/x**(5/2)/(b*x**5+a*x**2)**(1/2),x)

[Out]

Integral(1/(x**(5/2)*sqrt(x**2*(a + b*x**3))), x)

Maxima [F]

\[ \int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx=\int { \frac {1}{\sqrt {b x^{5} + a x^{2}} x^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/x^(5/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^5 + a*x^2)*x^(5/2)), x)

Giac [F]

\[ \int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx=\int { \frac {1}{\sqrt {b x^{5} + a x^{2}} x^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/x^(5/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^5 + a*x^2)*x^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^{5/2} \sqrt {a x^2+b x^5}} \, dx=\int \frac {1}{x^{5/2}\,\sqrt {b\,x^5+a\,x^2}} \,d x \]

[In]

int(1/(x^(5/2)*(a*x^2 + b*x^5)^(1/2)),x)

[Out]

int(1/(x^(5/2)*(a*x^2 + b*x^5)^(1/2)), x)